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In this paper we study orthogonal polynomials with asymptotically periodic
reflection coefficients. It's known that the support of the orthogonality measure of
such polynomials consists of several arcs. We are mainly interested in the
asymptotic behaviour on the support and derive weak convergence results for the
orthogonal polynomials and also for the Christoffel function. � 2000 Academic Press
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1. INTRODUCTION AND NOTATION

Let Pn(z, _), n # N0 :=N _ [0], be the monic orthogonal polynomials on
the unit circle with respect to the probability measure _�2?. That is, _ is a
finite nonnegative Borel measure with supp(_)�[0, 2?] and _([0, 2?])=
2?. We further assume that the support of _ is an infinite set.

It is well known that the Pn 's satisfy a recurrence relation of the form

Pn+1(z, _)=zPn(z, _)+an Pn*(z, _), n # N0 , P0(z, _)=1, (1.1)

where the parameters an :=an(_) :=Pn+1(0, _) are called reflection
coefficients and satisfy |an |<1. Pn*(z, _) :=zn Pn(1�z� , _) denotes the

doi:10.1006�jath.2000.3450, available online at http:��www.idealibrary.com on

102
0021-9045�00 �35.00
Copyright � 2000 by Academic Press
All rights of reproduction in any form reserved.

1 This work was supported by the Austrian Fonds zur Fo� rderung der wissenschaftlichen
Forschung, Project P12985-TEC, and by a MAX-KADE postdoctoral fellowship, selected by
the O� sterreichischen Akademie der Wissenschaften. This work was completed while the
second author was visiting the Department of Mathematics at Ohio State University, U.S.A.



so-called reversed polynomial. The orthogonality property can be written
as

1
2? |

2?

0
Pn(ei., _) Pm(ei., _) d_(.)=$nm dn , (1.2)

where dn :=>n&1
j=0 (1&|aj |

2). As an immediate consequence, by the
normalization

8n(z, _) :=
Pn(z, _)

- dn

=
zn

- dn

+ } } } , n # N0 , (1.3)

we get the unique orthonormal polynomials with respect to _ with positive
leading coefficient:

1
2? |

2?

0
8n(ei., _) 8m(ei., _) d_(.)=$nm .

In this paper we study orthogonal polynomials whose reflection coef-
ficients are asymptotically periodic; i.e., there exist values a0

0 , ..., a0
N&1 ,

N # N, |a0
j |<1, such that

lim
& � �

a&N+ j=a0
j for j=0, 1, ..., N&1. (1.4)

Let [a0
n] denote the periodically extended sequence, i.e.,

a0
n=a0

n+N for n # N0 .

A crucial role will play the monic polynomials Pn(z, _0), n # N0 , generated
recursively by the periodic sequence [a0

n]

Pn+1(z, _0)=zPn(z, _0)+a0
nPn*(z, _0), n # N0 , P0(z, _0)=1.

The Pn(z, _0)'s are orthogonal polynomials with respect to a measure _0 ,
as indicated by the notation, which can be given even explicitly (see
[5, 15]). The corresponding orthonormal polynomials are denoted by
8n(z, _0) :=Pn(z, _0)�- d 0

n , d 0
n :=>n&1

j=0 (1&|a0
j |2).

In [16, 17] the authors have studied the asymptotic behaviour of the
``asymptotically periodic'' orthogonal polynomials 8n(z, _) for n � � out-
side the support of the measure of orthogonality. Ratio asymptotics of such
orthogonal polynomials have been given recently by Barrios and Lo� pez
[1]. In this paper we are again interested in the asymptotic behaviour, but
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on the support of the orthogonality measure. We show that the orthonor-
mal polynomials 8n(z, _) converge weakly on the support. As a byproduct
we obtain an extension of a result of Ma� te� , Nevai, and Totik [10] to the
asymptotically periodic case. Let us recall that in [10, Theorem 5] it is
shown that

lim
n � �

|8n(ei., _)| 2 d_(.)=d. in the weak-V sense, (1.5)

whenever the reflection coefficients an=Pn+1(0, _) satisfy

lim
n � �

an=0,

i.e., in our notation N=1 and a0
0=0. Using our extension of this result we

also derive asymptotics for the reproducing kernel function, i.e., for the
Christoffel function Kn(ei., ei.; _), on the support of the measure of
orthogonality. The statements are presented in Section 3. All the proofs are
given in Section 4. But first of all, in Section 2, we will state some basic
properties of the ``periodic'' orthogonal polynomials Pn(z, _0).

Let us finish this section with some more definitions. The monic polyno-
mial of the second kind of Pn(z, _), where [Pn(z, _)] satisfies (1.1), is given
recursively by

0n+1(z, _) :=z0n(z, _)&an0n*(z, _), 00(z, _) :=1.

Furthermore, the monic associated polynomials [P (k)
n (z, _)]n # N0

, resp. the
monic associated polynomials of the second kind [0 (k)

n (z, _)]n # N0
, of order

k, k # N0 , are given by the shifted recurrence formula

P (k)
n+1(z, _) :=zP (k)

n (z, _)+an+kPn
(k)*(z, _), P (k)

0 (z, _) :=1

0 (k)
n+1(z, _) :=z0 (k)

n (z, _)&an+k0n
(k)*(z, _), 0 (k)

0 (z, _) :=1.

Of course, these polynomials are again orthogonal on the unit circle. The
orthonormalized associated polynomials are defined by

8 (k)
n (z, _) :=

P (k)
n (z, _)

- d (k)
n

, 9 (k)
n (z, _) :=

0 (k)
n (z, _)

- d (k)
n

,

where d (k)
n :=>n&1

j=0 (1&|aj+k | 2). Naturally, the associated polynomials
have asymptotically periodic reflection coefficients, if (1.4) is satisfied.
Many properties of the associated polynomials can be found in [13].
Among others we have the relations
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2Pn+k(z, _)=(Pk(z, _)+Pk*(z, _)) P (k)
n (z, _)

+(Pk(z, _)&Pk*(z, _)) 0 (k)
n (z, _)

20n+k(z, _)=(0k(z, _)+0k*(z, _)) 0 (k)
n (z, _)

+(0k(z, _)&0k*(z, _)) P (k)
n (z, _)

2P (k)
n (z, _)=

1
dk zk [Pn+k(z, _)(0k(z, _)+0k*(z, _))

&0n+k(z, _)(Pk(z, _)&Pk*(z, _))]

20 (k)
n (z, _)=

1
dkzk [0n+k(z, _)(Pk(z, _)+Pk*(z, _))

&Pn+k(z, _)(0k(z, _)&0k*(z, _))], (1.6)

n, k # N0 .

2. BASIC PROPERTIES OF ORTHOGONAL POLYNOMIALS WITH
PERIODIC REFLECTION COEFFICIENTS

Orthogonal polynomials Pn(z, _0) with periodic reflection coefficients

a0
n=a0

n+N , n # N0 , N # N fixed,

have been studied by Geronimus [4, 5] and later also by the authors [15].
Let us give some basic facts about the ``periodic'' measure _0 , which are
needed in what follows.

It is known that the support of _0 consists of l, l�N, disjoint subintervals
of [0, 2?] and at most of a finite number of points outside the intervals.
Let us denote these intervals by

El := .
l

j=1

[.2 j&1 , .2 j], (2.1)

where the .k 's, k=1, ..., 2l, are pairwise distinct. For the corresponding
arcs on the unit circle we write

1El
:=[e i.: . # El].
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The set El and the measure _0 can completely be described by the
orthogonal polynomials Pn(z, _0) in the following way (see [15, Sects. 2, 4,
and 5]). Put

L :=2 \ `
N&1

j=0

(1&|a0
j |2)+

1�2

=2 - d 0
N (2.2)

and

T(z) := 1
2(PN(z, _0)+0N(z, _0)+P*N(z, _0)+0*N(z, _0))

= zN+ } } } (2.3)

R(z) :=T2(z)&L2zN=z2N+ } } } .

Then T and R are selfreversed polynomials which have all their zeros on
|z|=1. In particular, R has a simple zero at each end-point ei.j, j=1, ..., 2l,
of the arcs and exactly N&l double zeros ei�1, ..., ei�N&l in [ei.: . # int E l].
Thus R is of the form

R(z)=R(z) U2(z),

where R(z)=z2l+ } } } and U(z)=zN&l+ } } } are selfreversed polynomials
which vanish exactly at the ei.j 's and e i�j 's, respectively. Recall that a poly-
nomial Q is called selfreversed if Q(z)=+Q*(z), where |+|=1. Note, if Q
is a selfreversed polynomial then e&i(�Q�2) .+1�2Q(ei.) is a real trigonometric
polynomial of degree �Q�2. Now, the set El defined in (2.1) can be
expressed with the aid of the polynomials R and T, respectively, by

El=[. # [0, 2?]: e&il.R(ei.)�0]=[. # [0, 2?]: |T(ei.)|�L].

Furthermore, the absolutely continuous part f0 of _0 is given explicitly in
terms of the corresponding orthogonal polynomials by

f0(.)={ }
- R(ei.)

V(ei.) A(ei.) } , . # E l ,
(2.4)

0, . � El ,

where

V(z) A(z)=
P*N(z, _0)&PN(z, _0)

U(z)
# Pl (2.5)

and the polynomials A and V are such that all zeros of A are outside of
1El

and all zeros of V are endpoints of 1El
and the V is monic.
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The singular part of _0 consists of at most a finite number of mass points
which may appear only at zeros of A, to be more precise, at points ! where
A(ei!)=0.

In order to state our results on the ``asymptotically periodic'' measure _,
it will be useful to introduce, as in [15, Sects. 3, 4, and 5], also the following
notations. Since T, U, and R are selfreversed polynomials

{(.) :=e&i(N�2) .T(ei.), . # [0, 2?],

u(.) :=e&i((N&l )�2) .U(ei.), . # [0, 2?], (2.6)

R(.) :=e&il.R(ei.), . # [0, 2?],

are real trigonometric polynomials. Further, let

r(.) :={
ie&i(l�2) .

- R(ei.)=(&1) j+1
- |R(.)|,

for . # [.2 j&1 , .2 j],
e&i(l�2) .

- R(ei.)=(&1) j
- |R(.)|,

for . # [.2 j , .2 j+1],

(2.7)

where j=0, ..., l, with .0 :=0 and .2l+1 :=2?, be a real continuous square-
root function, which changes sign from the interval [.2 j&1 , .2 j] to the
interval [.2 j+1 , .2 j+2]. With this notation the function f0 from (2.4) can
also be written as

f0(.)={
r(.)

V(.) A(.)
�0, . # El

(2.8)

0, . � El

where (VA)(.) :=ie&i(l�2) .V(ei.) A(ei.) is again a real trigonometric
polynomial.

We will also use the following notation: Let z=ei. # 1El
, then from (2.3),

(2.6), and (2.7)

}T(ei.)+- R(ei.) U(ei.)
L }=1,

hence we can define #=#(.) by

ei#(.) :=e&i(N�2) . T(ei.)+- R(ei.) U(ei.)
L

, . # El . (2.9)
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It is easy to see, recall (2.6) and (2.7), that for . # El

cos #(.)=
{(.)

L
and sin #(.)=&

r(.) u(.)
L

. (2.10)

Finally, let us point out that if the reflection coefficients an(_) associated
with the orthogonality measure _ satisfy condition (1.4) then the accumulation
points of supp(_) and supp(_0) coincide, i.e.,

(supp(_))$=(supp(_0))$.

For N=1 this fact has been proved in [4; 8, Theorem 3]. The proof given
in [8] can easily be extended to the general case N # N. Hence, the support
supp(_), where _ denotes the perturbed measure in the sense of (1.4), also
consists of the l intervals El and at most a denumerable number of points
in [0, 2?) outside the intervals. Moreover, the end-points of El , i.e.,
.1 , ..., .2l , are the only possible accumulation points of the mass points,
which all lie outside of El .

3. ASYMPTOTICS OF THE ORTHOGONAL POLYNOMIALS
ON THE SUPPORT OF THE MEASURE OF ORTHOGONALITY

Ma� te� , Nevai, and Totik [10, Theorem 5] have proved the following
weak- V limit relation:

Theorem 1 (Ma� te� , Nevai, and Totik [10]). If _ satisfies

lim
n � �

Pn(0, _)=0 (3.1)

then for any 2?-periodic Riemann integrable function g we have

lim
n � � |

2?

0
g(.) |8n(e i., _)| 2 d_(.)=|

2?

0
g(.) d..

For measures from the Szego� -class Theorem 1 goes back to P. Tura� n
[21] and under the assumption _$>0 almost everywhere on [0, 2?] it was
proved by E. A. Rahmanov [18]. Let us recall that _$>0 a.e. on [0, 2?]
implies, by [19, p. 106], relation (3.1).

In this section we are mainly interested in asymptotics of the orthonor-
mal polynomials 8n(z, _) on the support of _. We will show how to extend
Theorem 1 if assumption (3.1) is replaced by the weaker one (1.4); compare
Corollary 1 below.
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In [16, formula (3.33)] the authors derived the following explicit expres-
sion for the unperturbed orthonormal polynomials 8n(z, _0) on the arcs
1El

: For all &, m # N and . # E l there holds

8&N+m(ei., _0)=
iLei(&N�2) .

- R(ei.) U(ei.)
[sin(&#(.)) 8m+N(ei., _0)

&ei(N�2) . sin((&&1) #(.)) 8m(ei., _0)]

=
ei((&&1) N�2) .

sin #(.)
[sin(&#(.)) 8m+N(ei., _0)

&ei(N�2) . sin((&&1) #(.)) 8m(ei., _0)]; (3.2)

recall the definition of # in (2.9). This formula shows the oscillating
behaviour of these polynomials on the arcs with respect to & and that, for
instance, pointwise convergence can not be expected in general. But we will
be able to derive weak asymptotics. Our first main results are the following
two theorems.

Theorem 2. Suppose that (1.4) holds and let j and k, j�k, be any
nonnegative integers. Then

lim
& � � |

2?

0

ei.+z
e i.&z

8&N+ j (ei., _) 8&N+k(ei., _) d_(.)

=
2?L
z j \B( j, k)(z)

- R(z)
+C( j, k)(z)+&2?$jk (3.3)

uniformly on compact subsets of C"[ei.: . # supp(_)], where B( j, k) and
C( j, k) are polynomials given by

B( j, k)(z) :=
1

4U(z)
(8k 9*N+ j+9k8*N+ j&8N+k9 j*&9N+k 8j*)(z, _0)

C( j, k)(z) :=
1

2L
(8k 9 j*+9k 8j*)(z, _0).

Remark. (a) By taking complex conjugation in (3.3) and using the
simple identity (ei.+z)�(e i.&z)=&(e i.+ y)�(e i.& y), y=1�z� , Theorem 2
can be extended easily to the case k> j.
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(b) Let j�k� j+N. Then, using the identities in (1.6), the
polynomials B( j, k) and C ( j, k) can be represented in the form

B( j, k)(z)=
zk

4U(z)
(8(k)*N+ j&k(z, _0)+9 (k)*N+ j&k(z, _0))

&
z j

4U(z)
(8 ( j)

N+k& j (z, _0)+9 ( j)
N+k& j (z, _0))

and

C( j, k)(z)=
z j

2L
(8 ( j)

k& j (z, _0)+9 ( j)
k& j (z, _0)).

Theorem 3. Suppose that (1.4) holds and let j and k, j�k, be any
nonnegative integers. Then

lim
& � � |

2?

0
g(.) 8&N+ j (ei., _) 8&N+k(ei., _) d_(.)

=|
El

g(.)
b( j, k)(.)

r(.)
d. (3.4)

for any 2?-periodic Riemann integrable function g, where

b( j, k)(.) :=iLe&i(l�2+ j) .B( j, k)(ei.)

and B( j, k) given as in Theorem 2.

If we put k= j in (3.4) then we obtain the announced extension of
Theorem 1:

Corollary 1. Suppose that (1.4) is satisfied. Then for all nonnegative
integers j there holds

lim
& � � |

2?

0
g(.) |8&N+ j (ei., _)| 2 d_(.)=|

El

g(.)
b( j)(.)

r(.)
d. (3.5)

for any 2?-periodic Riemann integrable function g, where

b( j)(.) :=b( j, j)(.)=
ie&i(N�2) .

2u(.)
(P ( j) V

N +0N
( j)*&P ( j)

N &0 ( j)
N )(ei., _0)

is a real trigonometric polynomial.
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Remark. If all the a0
n 's vanish simultaneously, i.e., an � 0 as n � �,

then in our notation N=l=1, R(z)=(1&z)2, U(z)=1, and

(P1
( j)*+01

( j)*&P ( j)
1 &0 ( j)

1 )(z, _0)

- R(z)
=

2&2z

1&z
#2.

The limit relation in Corollary 1 becomes

lim
n � � |

2?

0
g(.) |8n(e i., _)| 2 d_(.)=|

2?

0
g(.) d.,

which is Theorem 1.

Corollary 2. Suppose that (1.4) is satisfied. Then there holds

lim
n � � |

2?

0
g(.) Im[e&i(N�2) .8n(ei., _) 8n+N(ei., _)] d_(.)

=
1
L |

El

g(.) r(.) u(.) d.

and

lim
n � � |

2?

0
g(.) Im[e&iN.8n(ei., _) 8n+2N(ei., _)] d_(.)

=
1

2d 0
N

|
El

g(.) {(.) r(.) u(.) d.

for any 2?-periodic Riemann integrable function g.

Next, let

Kn(z, !; _) := :
n

k=0

8k(z, _) 8k(!, _)

be the Christoffel function (also called reproducing kernel function) with
respect to the measure _. Then we have the following asymptotic
behaviour:

Theorem 4. Suppose that (1.4) is satisfied. Then

lim
n � �

1
n |

2?

0
g(.) Kn(ei., e i.; _) d_(.)=

2
N |

El

g(.)
{$(.)

r(.) u(.)
d., (3.6)
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where {, u, and r are given as in (2.6) and (2.7), respectively, for any
2?-periodic Riemann integrable function g.

Theorem 4 can also be stated in the following form:

Corollary 3. Suppose that (1.4) is satisfied. Then

lim
n � �

1
n |

|!| =1
g~ (!) Kn(!, !; _) d_~ (!)=|

1El

g~ (!) +$El
(!) d!, (3.7)

where +El
denotes the equilibrium distribution on 1El

. Here, _~ (!)=_(.),
!=ei., and g~ is any Riemann integrable function on the circumference.
Furthermore,

+$El
(!)={

1
? \&

i
!+ }

S l (!)

- R(!) } for ! # 1El
,

(3.8)

0 elsewhere,

where the polynomial Sl # Pl is defined by Sl (ei.) U(ei.) :=(2�N ) ei(N�2) .{$(.).
Hence,

?+$El
(!) d!=

2
N

{$(.)
r(.) u(.)

d., !=ei., . # El .

4. PROOFS

We first prove the following lemma, which shows that we can restrict
ourselves to the case of unperturbed, periodic orthonormal polynomials
8n(z, _0).

Lemma 1. Let j, k be arbitrary nonnegative integers. Under the assump-
tion (1.4) we have

lim
n � � _|

2?

0
g(.) 8n+ j (ei., _) 8n+k(ei., _) d_(.)

&|
2?

0
g(.) 8n+ j (ei., _0) 8n+k(ei., _0) d_0(.)&=0 (4.1)

for any 2?-periodic Riemann integrable function g.

112 PEHERSTORFER AND STEINBAUER



Proof. Let n # N0 and m # Z. By (1.1) and (1.2) the integral

|
2?

0
eim.8n(ei., _) 8n(e i., _) d_(.)=|

2?

0
eim. |8n(ei., _)|2 d_(.)

can be written as a closed and continuous expression in terms of the
variables an+|m|&1 , ..., an&|m| (set aj :=0 if j<0). Hence, for a fixed m we
obtain from (1.4)

lim
n � � _|

2?

0
e im. |8n(ei., _)| 2 d_(.)&|

2?

0
eim. |8n(ei., _0)|2 d_0(.)&=0.

In the same way we get

lim
n � � _|

2?

0
eim. 8n(ei., _) 8n*(ei., _) d_(.)

&|
2?

0
eim. 8n(ei., _0) 8n*(ei., _0) d_0(.)&=0.

Let us assume, without loss of generality, that k� j. Then, by applying the
recurrence relation (1.1) (k& j)-times, we obtain

8n+k(z, _)=pk& j, n(z) 8n+ j(z, _)+qk& j&1, n(z) 8*n+ j (z, _)

8n+k(z, _0)=p0
k& j, n(z) 8n+ j (z, _0)+q0

k& j&1, n(z) 8*n+ j (z, _0),

where pk& j, n , p0
k& j, n and qk& j&1, n , q0

k& j&1, n are polynomials, depending
on n of degree not greater than k& j and k& j&1, respectively. By (1.4)
it is easy to see that

lim
n � �

( pk& j, n(z)& p0
k& j, n(z))=0

lim
n � �

(qk& j&1, n(z)&q0
k& j&1, n(z))=0

uniformly on compact subsets of C. Now the assertion (4.1) follows for all
functions of the form g(.)=eim. and m an integer. But then the lemma
also holds true for all trigonometric polynomials and consequently for all
2?-periodic continuous functions. Applying one-sided approximation
arguments [20, Theorem 1.5.4] we obtain the assertion. K

Let us return to the proofs of the main results:

Proof of Theorem 2. First we show that (3.3) holds pointwise for all
z # C"[ei.: . # supp(_)]. Hence, let us fix such a point z. By Lemma 1 it
suffices to consider only periodic, unperturbed polynomials 8n(z, _0). To
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be on the safe side let us, for the moment, also assume that z is not a mass
point of _0 . We will see later that even this fact will not cause any problem.

The following identity holds

|
2?

0

ei.+z
ei.&z

8&N+ j (ei., _0) 8&N+k(ei., _0) d_0(.)

=8&N+ j (1�z� , _0) |
2?

0

ei.+z
ei.&z

8&N+k(ei., _0) d_0(.)

&|
2?

0

e&i.+1�z
e&i.&1�z

[8&N+ j (e&i., _0)&8&N+ j (1�z, _0)]

_8&N+k(ei., _0) d_0(.).

By reasons of orthogonality the second integral at the right-hand side
vanishes if k> j and gives 2? if k= j. Hence we have

|
2?

0

ei.+z
ei.&z

8&N+ j (ei., _0) 8&N+k(ei., _0) d_0(.)

=2?(zk& j8*&N+ j(z, _0) G&N+k(z, _0)&$jk), (4.2)

where

G&N+k(z, _0) :=
1

2?z&N+k |
2?

0

ei.+z
ei.&z

8&N+k(ei., _0) d_0(.) (4.3)

denotes the function of the second kind with respect to _0 . Introducing the
polynomials

Qn(z, _0) U(z)=L8n+N(z, _0)&T(z) 8n(z, _0), n # N0 , (4.4)

we have the following limit-representations, cf. [16, Theorem 2.1 and
relation (3.7)],

lim
& � �

28*&N+ j (z, _0)<\T(z)+- R(z) U(z)
L +

&

=\8 j*(z, _0)+
Qj*(z, _0)

- R(z) ++ ,
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where the convergence holds uniformly on compact subsets of C"1El
.

Moreover, by [16, relation (3.7)]

G&N+k(z, _0)=
1

z&N+kV(z) A(z) \
T(z)&- R(z) U(z)

L +
&

_(- R(z) 8k(z, _0)&Qk(z, _0)). (4.5)

Hence, using the relation T2(z)&R(z) U2(z)=L2zN, we obtain

lim
& � � |

2?

0

ei.+z
ei.&z

8&N+ j (ei., _0) 8&N+k(ei., _0) d_0 (.)

=?
(- R(z) 8j*(z, _0)+Qj*(z, _0))(- R(z) 8k(z, _0)&Qk(z, _0))

z j
- R(z) V(z) A(z)

&2?$jk . (4.6)

In order to simplify the right hand side we write

(- R(z) 8j*(z, _0)+Qj*(z, _0))(- R(z) 8k(z, _0)&Qk(z, _0))

=(R(z) 8k(z, _0) 8j*(z, _0)&Qk(z, _0) Qj*(z, _0))

&- R(z)(8j*(z, _0) Qk(z, _0)&8k(z, _0) Q j*(z, _0)). (4.7)

For further simplifications let us state a couple of identities: From (1.6) we
get

28k(z, _0)=8j (z, _0)(8 ( j)
k& j (z, _0)+9 ( j)

k& j (z, _0))

+8j*(z, _0)(8 ( j)
k& j (z, _0)&9 ( j)

k& j (z, _0)) (4.8)

and, by (4.4), (4.8), and the periodicity of the reflection coefficients [a0
n],

2Qk(z, _0)=Qj (z, _0)(8 ( j)
k& j (z, _0)+9 ( j)

k& j (z, _0))

+Qj*(z, _0)(8 ( j)
k& j (z, _0)&9 ( j)

k& j (z, _0)). (4.9)

Furthermore,

R(z) 8j (z, _0) 8j*(z, _0)&Qj (z, _0) Qj*(z, _0)=z jV(z) A(z) H( j)(z)

R(z) 8*2
j (z, _0)&Q*2

j (z, _0)=z jV(z) A(z) G( j)(z),

(4.10)
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which follow after straightforward but tedious calculations (compare also
[15, (4.5) and (4.11)]). Here, H( j) and G( j) are polynomials and are given
by

H( j)(z) :=[PN
( j)*(z, _0)+0N

( j)*(z, _0)

&P( j)
N (z, _0)&0 ( j)

N (z, _0)]�U(z) (4.11)

G( j)(z) :=2(0N
( j)*(z, _0)&PN

( j)*(z, _0))�U(z). (4.12)

Next we obtain

2(R(z) 8k(z, _0) 8j*(z, _0)&Qk(z, _0) Qj*(z, _0))

=(R(z) 8j (z, _0) 8 j*(z, _0)&Qj (z, _0) Qj*(z, _0))

_(8 ( j)
k& j (z, _0)+9 ( j)

k& j (z, _0))

+(R(z) 8*2
j (z, _0)&Q*2

j (z, _0))(8 ( j)
k& j (z, _0)&9 ( j)

k& j (z, _0))

=z jV(z) A(z)(H( j)(z)(8 ( j)
k& j (z, _0)+9 ( j)

k& j (z, _0))

+G( j)(z)(8 ( j)
k& j (z, _0)&9 ( j)

k& j (z, _0))).

For the second term at the right hand side of (4.7) we get, again by (4.8)
and (4.9),

2(8j*(z, _0) Qk(z, _0)&8k(z, _0) Qj*(z, _0))

=(8 ( j)
k& j (z, _0)+9 ( j)

k& j (z, _0))

_(8j*(z, _0) Qj (z, _0)&8j (z, _0) Qj*(z, _0))

=&2z jV(z) A(z)(8 ( j)
k& j (z, _0)+9 ( j)

k& j (z, _0)).

For the last identity compare again [15, Sect. 4, Proof of Corollary 4.2].
Thus, the expression in (4.6) turns out to be

lim
& � �

1
? |

2?

0

ei.+z
e i.&z

8&N+ j (ei., _0) 8&N+k(ei., _0) d_0(.)

=_\ H( j)(z)

2 - R(z)
+1+ (8 ( j)

k& j (z, _0)+9 ( j)
k& j (z, _0))

+
G( j)(z)

2 - R(z)
(8 ( j)

k& j (z, _0)&9 ( j)
k& j (z, _0))&&2$jk . (4.13)
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Finally, again by using the identities in (1.6), it can be shown that

H( j)(z)(8 ( j)
k& j (z, _0)+9 ( j)

k& j (z, _0))+G( j)(z)(8 ( j)
k& j (z, _0)&9 ( j)

k& j (z, _0))

=
L

z jU(z)
(8k 9*N+ j+9k8*N+ j&8N+k9 j*&9N+k8 j*)(z, _0)

(4.14)

and

8( j)
k& j (z, _0)+9 ( j)

k& j (z, _0)=
1
z j (8k 9 j*+9k 8j*)(z, _0). (4.15)

This proves (3.3) pointwise for all z � [ei.: . # supp(_) _ supp(_0)].
In order to get uniform convergence on compact subsets K of

C"[ei. : . # supp(_)] we only have to apply the Stieltjes�Vitali theorem
since both sides in (3.3) are uniformly bounded functions on K. K

For Theorem 3, which is one of the central results of this paper, we will
present two independent proofs using completely different techniques. The
first proof is based on Theorem 2 and the second one on the explicit
representation (3.2) of the orthogonal polynomials on the support.

First Proof of Theorem 3. Let us start with the case N=1 and 1E1
=

[ |z|=1], i.e., limn � � an=0. Then we have d_0(.)=d., 8n(z, _0)=zn and
by Lemma 1

lim
& � � |

2?

0
g(.) 8&+ j (e i., _) 8&+k(ei., _) d_(.)=|

2?

0
g(.) ei(k& j) . d.,

which coincides with the given representation since in this special case

B( j, k)(z)=
zk

2
(1&z) and r(.)=ie&i.�2(1&ei.).

Next we consider the general case 1El
{[ |z|=1]. For abbreviation let

us put

I( j, k)(z) :=
2?L
z j \B( j, k)(z)

- R(z)
+C( j, k)(z)+ , j�k # N0 . (4.16)

For all j�k the functions I( j, k) are analytic in the extended plane C from
which 1c has been deleted, where

1c :=[ei.: . # [.1 , .2l]].
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Note that both polynomials B( j, k) and C( j, k) have a zero of order (at least)
j at z=0, which follows from (4.14) and (4.15), respectively. In fact, I( j, k)

is even analytic on C"1El
. By Theorem 2 we have

I( j, k)(z)= lim
& � � |

2?

0

ei.+z
ei.&z

8&N+ j (ei., _) 8&N+k(ei., _) d_(.)+2?$jk

and orthogonality implies

I( j, k)(�)= lim
z � �

I( j, k)(z)=0.

Moreover, the boundary values I \
( j, k)(!), ! # 1c , given by

I +
( j, k)(!)= lim

z � !, |z| >1
I( j, k)(z)

I &
( j, k)(!)= lim

z � `, |z|<1
I( j, k)(z),

fulfill all the regularity properties of [9, Theorem 4.1 and its extension in
Sect. 5]. Hence, the representation

I( j, k)(z)=
1

2?i |
1c

1
!&z

[I +
( j, k)(!)&I &

( j, k)(!)] d! (4.17)

holds. Since I( j, k) is analytic on C"1El
and

lim
z � !, |z| <1

- R(z)=: &
- R(!)= +

- R(!) :=& lim
z � !, |z| >1

- R(z)

we have

I +
( j, k)(!)&I &

( j, k)(!)={
4?L

! j

B( j, k)(!)

- R(!)
, ! # 1El

0, ! # 1c"1El
,

where - R(!) := +
- R(!). Using the identity

1
!&z

=
1

2! _
!+z
!&z

+1&
and the substitution !=ei., (4.17) gives

I( j, k)(z)=|
El

ei.+z
ei.&z

b( j, k)(.)
r(.)

d.+|
El

b ( j, k)(.)
r(.)

d..
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Moreover,

I( j, k)(0)=2 |
El

b( j, k)(.)
r(.)

d.={0,
4?,

for j{k
for j=k,

where the second identity follows from (4.16), (3.3), and the orthogonality
property. Hence,

|
El

b( j, k)(.)
r(.)

d.=2?$jk

and

I( j, k)(z)=|
El

ei.+z
ei.&z

b( j, k)(.)
r(.)

d.+2?$jk .

Comparing this last representation with (4.16) and (3.3) yields

lim
& � � |

2?

0

ei.+z
ei.&z

8&N+ j (ei., _) 8&N+k(ei., _) d_(.)

=|
El

ei.+z
ei.&z

b( j, k)(.)
r(.)

d.. (4.18)

The above identity holds for all z # C"[ei.: . # supp(_)]. By expanding

ei.+z
ei.&z

=1+2 :
�

n=1

e&in.zn for |z|<1

and

ei.+z
ei.&z

=&
e&i.+1�z
e&i.&1�z

=&1&2 :
�

n=1

ein.yn, y :=
1
z

, |z|>1,

and comparing coefficients in (4.18), assertion (3.4) follows for all functions
g(.)=eim., m # Z. Now the same arguments as at the end of the proof of
Lemma 1 give the result. K

Let us sketch the second variant of proof which does not make use of
Theorem 2.

Second Proof of Theorem 3. By Lemma 1 it suffices only to consider
the periodic orthonormal polynomials 8n(z, _0). In the following all the
orthonormal polynomials will correspond to the measure _0 and we simply
write 8n(z), 9n(z), etc.

119ASYMPTOTICS OF ORTHOGONAL POLYNOMIALS



From (3.2) we get

sin2(#(.)) 8&N+ j (ei.) 8&N+k(ei.)

=sin2(&#(.)) 8N+k(ei.) 8N+ j (ei.)

+sin2((&&1) #(.)) 8k(ei.) 8j (ei.)

&sin((&&1) #(.)) sin(&#(.))

_(ei(N�2) .8k(e i.) 8N+ j (e i.)+e&i(N�2) .8N+k(ei.) 8j (ei.)).

Let us recall that # is strictly monotone and differentiable on each of the
intervals [.2 j&1 , .2 j], j=1, ..., l, and maps all these intervals onto [0, ?].
Furthermore it is known that

lim
& � � |

?

0
g(x) sin2(&x) dx= 1

2 |
?

0
g(x) dx (4.19)

and

lim
& � � |

?

0
g(x) sin(&x) sin((&&1) x) dx= 1

2 |
?

0
g(x) cos x dx (4.20)

for every 2?-periodic Riemann integrable function g. Now, by transforming
the variable of integration in (3.4) from . to #=#(.), then letting & tend
to infinity, applying (4.19) and (4.20) and transforming back, it is not
difficult to see that

sin2(#(.)) 8&N+ j (ei.) 8&N+k(ei.)

ww�
V

& � �
8N+k (ei.) 8N+ j (ei.)

+8k(ei.) 8j (ei.)

&cos #(.)(ei(N�2) .8k(e i.) 8N+ j (ei.)

+e&i(N�2) .8N+k(ei.) 8j (ei.)) (4.21)

on the set El for the class of all 2?-periodic Riemann integrable functions.
By the definition of the reversed polynomials and by (2.10), the right hand
side is nothing but, z=ei.,

1
2zN+ j _8N+k(z) 8*N+ j (z)+zN8k(z) 8 j*(z)

&
1
L

T(z)(8k(z) 8*N+ j (z)+8N+k(z) 8j*(z))& .
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Tedious but straightforward calculations, using the identities in (1.6), give
that this last expression can also be written as

V(z) A(z) U(z)
4LzN+ j (8N+k(z) 9 j*(z)+9N+k(z) 8j*(z)

&8k(z) 9*N+ j (z)&9k(z) 8*N+ j (z)).

Now we make use of (2.8) and (2.10), i.e.,

V(.) A(.)=ie&i(l�2) .V(e i.) A(ei.)

sin #(.)=&
r(.) u(.)

L
, . # El

_$0(.)=
r(.)

V(.) A(.)
, . # El ,

then (4.21) takes the form

8&N+ j (ei.) 8&N+k(e i.) _$0(.)

ww�
V

& � �

iL
4zl�2+ jr(.) u(.)

_(8k9*N+ j+9k8N+ j&8N+k9 j*&9N+k8j*)(z),

z=ei., (4.22)

again on the set El for the class of all 2?-periodic Riemann integrable
functions.

Recall that the singular component of the measure _0 consists of at most
finitely many mass points, which are located outside the intervals El , and
that _0 is absolutely continuous on El . At the mass points the orthonormal
polynomials tend to zero as n goes to infinity, since at these points the sum
��

n=1 |8n(z)|2 exists. Hence, (4.22) already gives the desired assertion. K

Proof of Corollary 1. The statement (3.5) is an immediate consequence
of Theorem 3, the Remark after Theorem 2, and the identities (2.3) and
(2.6). K

Proof of Corollary 2. In a similar way as in the proof of Lemma 1 it can
be shown that it suffices to show the limit relations only for the ``periodic''
measure _0 . To show the statement for the measure _0 , as usual, we
consider trigonometric polynomials first, then 2?-periodic continuous
functions, and finally 2?-periodic Riemann integrable functions.
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One way to prove the corollary is to apply Theorem 3. But this causes
some calculations. A shorter way is to proceed as follows. Obviously, for
every n # N,

|
2?

0
g(.) Im[e&i(N�2) .8n(ei., _0) 8n+N(ei., _0)] d_0(.)

=
i
2 |

2?

0
g(.)[ei(N�2) .8n(ei., _0) 8n+N(ei., _0)

&e&i(N�2) .8n(ei., _0) 8n+N(ei., _0)] d_0(.)

=
i
2 |

2?

0
g(.) e&i(n+N�2) .[8n(ei., _0) 8*n+N(ei., _0)

&8n*(ei., _0) 8n+N(ei., _0)] d_0(.).

Because of the periodicity of the reflection coefficients it can be shown by
straightforward calculations that

8n(z, _0) 8*n+N(z, _0)&8n*(z, _0) 8n+N(z, _0)

=zn(8*N(z, _0)&8N(z, _0))=
znV(z) A(z) U(z)

- d 0
N

.

Since, by (2.8) resp. by (2.4) and the lines thereafter,

d_0(.)=
r(.) d.

ie&i(l�2) .V(ei.) A(ei.)
+possibly point measures at zeros of A

the first assertion follows; recall that 2 - d 0
N =L.

By the periodicity of the reflection coefficients a0
n=a0

n+N=a0
n+2N for

n # N0 one can derive

8n(z, _0) 8*n+2N(z, _0)&8n*(z, _0) 8n+2N(z, _0)

=zn(8*2N(z, _0)&82N(z, _0))

=
zn

d 0
N

(P*2N(z, _0)&P2N(z, _0))

=
zn

d 0
N

T(z) V(z) A(z) U(z)

by straightforward calculation. Now the second assertion can be proved as
the first part of the corollary. K
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Proof of Theorem 4. From Corollary 1 we obtain by routine calculation

lim
n � �

1
n |

2?

0
g(.) Kn(ei., ei.; _) d_(.)

=
1
N |

El

g(.) :
N&1

j=0

b( j)(.)
r(.)

d.. (4.23)

Combining the definition of b( j) in Corollary 1 and (4.11) we have

b( j)(.)=
i
2

e&i(l�2) .H( j)(ei.).

Hence, we are looking for a closed expression for the sum

:
N&1

j=0

b( j)(.)
r(.)

= :
N&1

j=0

H( j)(ei.)

2 - R(ei.)
= lim

s � 1&
:

N&1

j=0

H ( j)(sei.)

2 - R(se i.)
, . # El .

From (4.10) we know

R(z) 8j (z, _0) 8 j*(z, _0)&Qj (z, _0) Qj*(z, _0)

=z jV(z) A(z) H( j)(z), (4.24)

where by (4.4)

Qj (z, _0) U(z)=L8 j+N(z, _0)&T(z) 8j (z, _0).

Let us define the functions

8\
j (z) :=8j+N(z, _0)& y\(z) 8j (z, _0)

(4.25)
8*\

j (z) :=8*j+N(z, _0)& y\(z) 8j*(z, _0)

with

y\(z) :=
T(z)\- R(z) U(z)

L
.

Then the above identity (4.24) can be written in the form

8+
j (z) 8&

j (1�z� )+8&
j (z) 8+

j (1�z� )

=&
2

L2zN V(z) A(z) U2(z) H ( j)(z). (4.26)
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By definition (4.25) and by the periodicity of the reflection coefficients
[a0

n=a0
n+N] it is not difficult to see that the functions 8\

n and 8*\
n fulfill

the same recurrence-relation as the orthonormal polynomials 8n(z, _0),
that is,

- 1&|a0
n |2 8\

n+1(z)=z8\
n (z)+a0

n8*\
n (z)

- 1&|a0
n |2 8*\

n+1(z)=8*\
n (z)+za� 0

n8\
n (z).

Further, by [15, Corollary 4.1(a)] we have

82N(z, _0)=
2T(z)

L
8N(z, _0)&zN,

and thus

8\
N (z)=y�(z) 8\

0 (z) (4.27)

8*\
N (z)=y�(z) 8*\

0 (z).

Now we can use quite the same techniques as for the proof of the
Christoffel�Darboux formula (cf., e.g., [7, Chap. 1.1.4, p. 8]) to obtain

:
n

j=0

8\
j (z) 8\

j (!)

=
\8*\

n+1(z) 8*�
n+1(!)&8\

n+1(z) 8 �
n+1(!)

&8*\
0 (z) 80*

�(!)+8\
0 (z) 8 �

0 (!)+
1&z!�

Taking n=N&1 and using the initial-property (4.27) gives

:
N&1

j=0

8\
j (z) 8 �

j (!)=
y�(z) y\(!)

1&z!�
[8*\

0 (z) 8* �
0 (!)&8\

0 (z) 8 �
0 (!)].

(4.28)

Since we are interested to get a closed expression for the sum over the
H( j) 's we have, by (4.26), to evaluate the above identity at !=1�z� . Using
the selfreversed-property of the polynomials T, U, and R we obtain for all
z # C

y\(1�z� )=
y\(z)

zN ,
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which gives

y�(z) y\(1�z� )=
y�(z) y\(z)

zN =
T2(z)&R(z) U2(z)

L2zN #1. (4.29)

Let us recall in this connection that for z # 1El
we have by (2.7) (see [14,

Lemma 3.1 and Remark 3.2])

+
- R(ei.)=& &

- R(ei.)=&- R(ei.)=&ie i(l�2) .r(.), (4.30)

where, as usual,

+
- R(ei.) := lim

s � 1+
- R(se i.) and &

- R(ei.) := lim
s � 1&

- R(se i.).

In order to calculate the sum in (4.28) we use the following limiting
processes. First let ! tend to ei. from the interior of the unit disk and z to
ei� from the exterior of the unit disk, and then let � � ..

Let us consider the right hand side of (4.28) in order to calculate

:
N&1

j=0

8\
j (ei.) 8 �

j (ei.)= lim
� � .

:
N&1

j=0

8\
j (ei�) 8 �

j (ei.).

By (4.29) and de l'Hospital's rule we get

lim
� � .

y�(ei�) y\(ei.)&1
1&ei(�&.)

= lim
� � .

eiN(�&.)�2[({(�)�ir(�) u(�))({(.)\ir(.) u(.))]&L2

L2(1&ei(�&.))

=&
N
2

&
[{$(.)�i(r(.) u(.))$][{(.)\ir(.)]

iL2 .

Taking the limit process z � ei�, |z|>1, ! � ei., |!|<1, and � � ., we
obtain by (4.30) that

80*
\(ei.) 80*

�(ei.)&8\
0 (ei.) 8 �

0 (ei.)

=
2 - R(ei.) U(ei.)

Le iN. [8*N(ei., _0)&8N(ei., _0)].
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Now by (4.26), (4.28), and the above representations we get

&
2

L2eiN. V(ei.) A(ei.) :
N&1

j=0

H( j)(ei.)

=
2 - R(ei.) U(e i.)

iL3eiN. [8*N(e i., _0)&8N(ei., _0)]

_([{$(.)+i(r(.) u(.))$][{(.)&ir(.) u(.)]

&[{$(.)&i(r(.) u(.))$][{(.)+ir(.) u(.)])

=
4 - R(ei.) U(e i.)

L3eiN. [8*N(e i., _0)&8N(ei., _0)]

_((r(.) u(.))$ {(.)&r(.) u(.) {$(.)),

and by V(z) A(z) U(z)=- d 0
N (8*N(z, _0)&8N(z, _0))

:
N&1

j=0

b( j)(.)
r(.)

=
1

2d 0
N

(r(.) u(.) {$(.)&(r(.) u(.))$ {(.)).

Finally, let us show the identity

r(.) u(.) {$(.)&(r(.) u(.))$ {(.)=
4d 0

N{$(.)
r(.) u(.)

. (4.31)

Then the desired relation (3.6) follows from (4.23).
From the second line in (2.3) and from (2.7) we obtain

{2(.)+r2(.) u2(.)=L2, . # El ,

i.e.,

r2(.) u2(.)=L2&{2(.) and r(.) u(.)(r(.) u(.))$=&{(.) {$(.).

Substituting these identities in the left hand side of (4.31) gives

r(.) u(.) {$(.)&(r(.) u(.))$ {(.)

=
1

r(.) u(.)
((L2&{2(.)) {$(.)+{2(.) {$(.))

=
L2{$(.)

r(.) u(.)
=

4d 0
N{$(.)

r(.) u(.)
.

This finishes the proof. K
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Proof of Corollary 3. We will follow some ideas, given by the first
author in [12, Lemma 2.2(a)]. In [17, relation (5.12)] we have shown that
the complex Green function G(z, �)=: G(z) of C� "1El

with pole at � is
given by

G(z)=
1
2 |

z

z1

1
! \1&

iS l (!)

- R(!)+ d!, z1=ei.1, (4.32)

where the polynomial Sl is given by Sl (ei.) U(ei.) :=(2�N) ei(N�2) .{$(.)
and where the integration is performed along a path in the complex plane
cut along 1El

. On the other hand we have the representation (cf. [23,
Sect. 14])

G(z)=|
1El

ln(z&!) d+El
(!)&ln #(1El

), (4.33)

where +El
is the equilibrium distribution on 1El

and where #(1El
) denotes

the capacity of 1El
. Differentiating the identities in (4.32) and (4.33) gives

|
1El

1

z&!
d+El

(!)=
1

2z \1&
iSl (z)

- R(z)+=: 8(z).

With the help of the Sochozki�Plemelj formulas (see, e.g., [11, 9;
Theorem 4.1]) we obtain

2?i+$El
(!)=8+(!)&8&(!)=2i \&

i

!+ }
S l (!)

- R(!) } , ! # 1El
,

which is (3.8). Now (3.7) immediately follows from Theorem 4. K
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